PHYSIQUE NUCLEAIRE.
I. Radioactivité.

instabilite	$\oplus+0$
atomes ne	$0 \oplus$

ⓣris répulisif
atomes me vivent pas stermellement, se trouspoment en outres isotopes en éméttant une nádiation ionisaute (nadiocactives: corscut les máculos, liaisous chimiques)
désintégrations mulíaines: tronsmutations.

- reactions mecleaires
- a : libénation d'en moyou d' "He.
gronde vitesse

$$
{ }_{88}^{226} \mathrm{Ra} \xrightarrow{\alpha}{ }_{2}^{4} 4 \mathrm{l} \text {. }+\underbrace{{ }_{222}^{26} R_{N}}_{\text {Moivel elément }}
$$

tris ionisante: So aso iomisations/cm d'air ties pen peimétronse

- B- : mectron triensfamí en proton Elcurnon ejecte.
thes gnoudle vikeste

$$
\begin{aligned}
& { }_{6}^{14} \mathrm{C} \xrightarrow{\beta^{*}}{ }_{7}^{14} N+{ }_{-1}^{0} e+\underbrace{\bar{\nu}_{e}}_{\begin{array}{l}
\text { outineution (masse } \\
\text { et chaige milles) }
\end{array}} \\
& \text { et chasge mulles) }
\end{aligned}
$$

- β^{+}: proton trouzformé en mentron
positan ejecré
tiés suande viterse

$$
{ }_{6}^{11} C \stackrel{B^{+}}{\longrightarrow}{ }_{5}^{1-1} B+\underbrace{0^{o} e^{e}}_{\text {praiton }}+\underbrace{\nu_{e}}_{\text {mentrimo }}
$$

- : élat excité, riche en énergie ploquet d'ódes électromaguétiques de thes houtes friquences thés plu ionisaut tri's pémétrout

$$
{ }_{82}^{210} \mathrm{~Pb} \xrightarrow{\beta^{-}} \underbrace{210}_{=B_{i}+r} \mathrm{Bi}^{*} B_{i}^{*}+{ }_{-1}^{0} e\left(+\bar{\nu}_{e}\right)
$$

Déucissance nadicachive:

$N_{0} \quad \frac{N_{0}}{2} \quad \frac{N_{0}}{2^{2}} \quad \frac{N_{0}}{2^{3}}$ \}mbr de nayoux $\quad N_{k T}=\frac{N_{0}}{2^{k}}$
$A_{k}=\frac{\left(N_{0} / 2^{k}\right)}{T} \quad C_{0}$ activité nadicactive moyenne
$N(t)=N_{0} \cdot e^{-\lambda t} \quad$ ai $\quad \lambda=$ constante de desimtégration

$$
A(t)=\lambda \cdot N(t)
$$

$$
L \rightarrow \lambda=\frac{\ln 2}{T}\left(s^{-1}\right)
$$

Roudiopnotection: mesures de doses de rayonnements ionisants et fem impacts biologiques Rayoukenvents ionisants = apport d'éne gie capable de couser des ioniseatious al viveau des mairo. modícules du moyou cellulaire.

- densité : dOSE ABSORBEE $\frac{1 J}{1 \mathrm{~kg}}=1 \mathrm{~Gy}$ (Gnay)
- dose equivalente pondine la dose absarbée par un facteur ol'efficacité bidogigue

$$
E B R \quad D E=D A \cdot E B R \quad(S v-\text { Sievert })
$$

- DOSE EFFICACE: somune sur tous leo tissus touchés

$$
D \text { eff }=\sum_{\text {organes }} \cdot \operatorname{cocf}_{\text {ougovies }} \cdot \frac{D E}{\text { ouganes }}
$$

- On recoit maturellement: $2,5 \mathrm{~m}$ Siv/an

$$
0,3 \text { usvih }
$$

II. Emergie mucléaine.

Réacteur tullíaire : fission
 ${ }^{235}$ U bectun division + 3mentrons

Rendement d'une centrale nuclíaine:

$$
\begin{aligned}
& P_{\text {theur }}^{\longrightarrow} \text { Pél } \\
& \text { ole } \\
& \text { Pruce }
\end{aligned} \quad P_{\text {ruce }}=\frac{1}{3} P \text { Pél }
$$

Pu dans néacheur:

$$
\begin{aligned}
& \hat{o}_{0} u+{ }_{s 2}^{238} U \longrightarrow{ }_{s 2}^{23 s} U^{2} U_{-1}^{2} e+{ }_{93}^{239} N p \\
& \int_{-1}^{B-} e+{ }_{94} P_{u}
\end{aligned}
$$

netraitement du Po
\rightarrow quasi-stable déchets $=24000$
\rightarrow ok misis rewdement $\frac{1}{3}$
Calcul d'érurgie mucléoine.
Défaut de masse $\left.\quad \begin{array}{l}\text { mavie } \\ \text { moyoux } \\ \text { séperés }\end{array}\right\rangle \begin{aligned} & \text { moyserx } \\ & \text { collés }\end{aligned}$

$$
\begin{aligned}
\Delta E=\Delta m \cdot c^{2} \text { ai } & c=3 \cdot 10^{8} \mathrm{~m} / \mathrm{s} \\
& \Delta m=\mathrm{min}_{\text {indéows }} \mathrm{mm}_{\text {mogou }}
\end{aligned}
$$

et $\mathrm{mm}_{\text {manau }}<\mathrm{m}_{\text {muleors }}$
Gain d'émergie:

- fission du mayan de ${ }^{235}$ U

$$
\begin{aligned}
& \text { ission du moyau de }{ }^{235} \mathrm{U} \\
& \text { oi } E \text { Eursation } \\
& =1 \mathrm{eV}^{-19} \\
&
\end{aligned}
$$

- fusion nuléaire:

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{{ }_{1}^{1}}^{1} \quad \text { exothcimique }
$$

deuterium tritiorn
III. Définitious.
l. P. 270 Activité - Datation - Dénoissonce Nadioactive - Défaut de
alase - Demi-vie - Désimtégration- Energie de lísison Masse - Demi-vie - Désimhégration-Encigie de liaisonEquivalonce másse-éneigie - Isotopes - Mase atainigueNotation mircléaire - Nuléon - Radistions iollisautes Radicactif - Umia.

